Name \qquad

Part A - Varying c

1. Graph the following functions using your calculator and then complete the table.

Function	Vertex	y-intercept	x-intercepts
$y=x^{2}+4 x+9$			
$y=x^{2}+4 x+6$			
$y=x^{2}+4 x+3$			
$y=x^{2}+4 x+0$			
$y=x^{2}+4 x-3$			
$y=x^{2}+4 x-6$			
$y=x^{2}+4 x-9$			
Predit			

Predict the vertex, y-intercept and x-intercepts for the following functions.

$y=x^{2}+4 x-15$			
$y=x^{2}+4 x+10$			

Summarize: In general, what information does the value of c tell you about the parabola?

Part B - Varying a

Function	Vertex	y -intercept	x -intercepts	
$y=10 x^{2}+4 x+9$				
$y=3 x^{2}+4 x+9$				
$y=2 x^{2}+4 x+9$				
$y=x^{2}+4 x+9$				
$y=1 / 2 x^{2}+4 x+9$				
$y=1 / 3 x^{2}+4 x+9$				
$y=1 / 10 x^{2}+4 x+9$				
Predict the vertex, y-intercept and x-intercepts for the following functions.				
$y=5 x^{2}+4 x+9$				
$y=0.75 x^{2}+4 x+9$				

Summarize: In general, what information does the value of a tell you about the parabola?

Part C: Varying b

Function	Vertex	y -intercept	x -intercepts	
$y=x^{2}+3 x$				
$y=x^{2}+2 x$				
$y=x^{2}+x$				
$y=x^{2}+0$				
$y=x^{2}-x$				
$y=x^{2}-2 x$				
$y=x^{2}-3 x$				
Predict the vertex, y -intercept and x-intercepts for the following functions.				
$y=x^{2}-5 x$				
$y=x^{2}+5 x+1$				

Summarize: In general, what information does the value of b tell you about the parabola?

A closer look at varying b

Fill in the chart with the x and y -values of the vertices from the graphs you plotted above.

x							
y							

Calculator Instructions

1. Enter the x -values into L_{1} and the y -values into L_{2}.
2. Clear the graphs you entered if you haven't already. Plot the points using STATPLOT.
3. Press $\mathrm{Y}=$ and enter the following equation in $\mathrm{Y}_{1}: y=A x^{2}+B x+C$.
(To enter the letters on your calculator, press ALPHA.)
4. Press the APPS key and select the Transfrm application. Press any key.
5. Press GRAPH. You should see a screen similar to the one below. Your values for A, B and C may be different.

6. Try to find the equation of the parabola that passes through the points plotted. Note: You can either enter the values for A, B or C or you can use the \uparrow or \downarrow key to change their values.

What equation best models the points plotted? \qquad
Practice with the Transfrm Application
Plot the data given using your calulator.

x	0	2	4	6	8	10
y	2	0	14	44	90	152

Fit a parabola to the points by changing the values of A, B and C .
What equation best models the points plotted? \qquad

